Math, asked by magantiakshith440, 8 months ago

find a quadratic polynomial the sum and product of whose zeros are 1 and 1 respectively​

Answers

Answered by Anonymous
9

\huge\underline{ \mathbb\red{❥A} \green{n} \mathbb\blue{S} \purple{w} \mathbb \orange{E} \pink{r}} \:</p><p>

α+β=1

αβ=1

=k(x²-(α+β)x+αβ)

=k(x²-x+1)

polynomial is x²-x+1

&lt;marquee behavior=alternate&gt;&lt;font color=red&gt;&lt;bgcolor=white&gt;please mark me brainlist ✔️

&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>h1{</p><p></p><p>text-transform:uppercase;</p><p></p><p>margin-top:90px;</p><p></p><p>text-align:center;</p><p></p><p>font-family:Courier new,monospace;</p><p></p><p>border:3px solid rgb(60,45,8);</p><p></p><p>border-top:none;</p><p></p><p>width:67%;</p><p></p><p>letter-spacing:-6px;</p><p></p><p>box-sizing:border-box;</p><p></p><p>padding-right:5px;</p><p></p><p>border-radius:6px;</p><p></p><p>font-size:35px;</p><p></p><p>font-weight:bold;</p><p></p><p>}</p><p></p><p>h1 span{</p><p></p><p>position:relative;</p><p></p><p>display:inline-block;</p><p></p><p>margin-right:3px;</p><p></p><p>}</p><p></p><p>@keyframes shahir{</p><p></p><p>0%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>40%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>50%</p><p></p><p>{</p><p></p><p>transform: translateY(-50px)rotate(180deg);;</p><p></p><p>}</p><p></p><p>60%</p><p></p><p>{</p><p></p><p>transform: translateY(0px)rotate(360deg);;</p><p></p><p>}</p><p></p><p>100%</p><p></p><p>{</p><p></p><p>transform: translate(0px)rotate(360deg);;</p><p></p><p>}}</p><p></p><p>h1 span</p><p></p><p>{</p><p></p><p>animation: shahir 3s alternate infinite linear;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(1)</p><p></p><p>{color:red;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(2)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(3)</p><p></p><p>{color:orange;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(4)</p><p></p><p>{color:pink;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(5)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(6)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(7)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.1s;</p><p>}</p><p></p><p>h1 span:nth-child(8)</p><p></p><p>{color:red;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(9)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(10)</p><p></p><p>{color:orange;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(11)</p><p></p><p>{color:pink;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(12)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(13)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(14)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(15)</p><p></p><p>{color:yellow;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>} </p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;meta name="viewport" content="width=device-width" &gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;center&gt;</p><p></p><p>&lt;div&gt;</p><p></p><p>&lt;h1&gt;</p><p></p><p>&lt;span&gt;J&lt;/span&gt;</p><p></p><p>&lt;span&gt;A&lt;/span&gt;</p><p></p><p>&lt;span&gt;i&lt;/span&gt;</p><p></p><p>&lt;span&gt;H&lt;/span&gt;</p><p></p><p>&lt;span&gt;i&lt;/span&gt;</p><p></p><p>&lt;span&gt;N&lt;/span&gt;</p><p></p><p>&lt;span&gt;D&lt;/span&gt;</p><p> </p><p></p><p></p><p></p><p>&lt;/h1&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;/center&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;</p><p></p><p>

Answered by Anonymous
16

\sf\huge\blue{\underline{\underline{ Question : }}}

Find a quadratic polynomial whose the sum and product of zeros are 1 and 1 respectively.

\sf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • \tt\red{:\implies Sum\:of\:the\:zeroes  :  \alpha + \beta = 1 }
  • \tt\red{:\implies Product\:of\:the\:zeroes : \alpha \beta = 1 }

To find,

  • Quadratic Polynomial.

Now,

We know that form of a quadratic polynomial is :

\tt\: x^{2} - (\alpha + \beta)x + \alpha\beta = 0

  • Substitute the zeroes.

\bf\:\leadsto x^{2} - (1)x + 1 = 0

\bf\:\leadsto x^{2} - x + 1 = 0

\underline{\boxed{\bf{\purple{ \therefore Quadratic\;Polynomial  :  x^{2} - x + 1 = 0.}}}}\:\orange{\bigstar}

Similar questions