Math, asked by snskrtsanskriti8, 4 months ago


Find a quadratic polynomial, the sum and product of whose zeroes are
 \sqrt{2}
and
 - 3 \2
respectively. Also, find its zeroes.​

Answers

Answered by ADARSHBrainly
19

{\Large{\underline{\underline{\bf{ \red{Question:}}}}}}

Find a quadratic polynomial, the sum and product of whose zeroes are  \sqrt{2} and   \cfrac{-3}{2} respectively. Also, find its zeroes.

{\Large{\underline{\underline{\bf{ \red{Answer :}}}}}}

Given :-

  • Sum of the zeroes =  \sqrt{2}
  • Product of the zeroes =   \cfrac{-3}{2}

To find :-

  • Quadratic Polynomial

We know that quadratic polynomial in form of :-

  • ax² + bx + c

—————————————————————————

● Also Sum of the zeroes is given by

{\underline{\boxed{\sf{Sum  \: of \:  the  \: Zeroes =  \frac{ -(Coefficient \: of  \: x) }{Coefficient \:  of  \: x^{2} } =  \frac{( - b)}{a} }}}}

{\sf{Sum  \: of \:  the \:  Zeroes =   - \cfrac{b}{a} }}

{\sf{Sum  \: of \:  the \:  Zeroes =  \cfrac{ -  \sqrt{2} }{1} }}

● And Product of the Zeroes is given by

{\underline{\boxed{\sf{Product  \: of  \: the  \: Zeroes =  \frac{ Constant  \: Term}{ Coefficient  \: of  \: x^{2}} =  \frac{c}{a}  }}}}

Assuming that a = 1

{\sf{Product  \: of \:  the  \: Zeroes  \implies  \cfrac{c}{1}  =  \cfrac{ - 3}{2} }}

{\sf{Product  \: of \:  t he \:  Zeroes  \implies \: c \:  =  \cfrac{ - 3}{2} }}

—————————————————————————

Here values of a, b & c are ,

  • a = 1
  • b = - √2
  • c =   \cfrac{-3}{2}

So, Quadratic Polynomial made is

{\large{\bf{\implies {ax^{2} + bx + c }}}}

{\large{\sf{\implies {1x^{2} +  (-  \sqrt{2} x )+  \bigg ( - \cfrac{ 3}{2} \bigg)  }}}}

{\large{\sf{\implies {x^{2}  -   \sqrt{2}  x  -   \cfrac{3}{2} }}}}

Multiplying 2 by whole polynomial, then we get.

{\large{\sf{\implies2 \bigg( {x^{2}  -   \sqrt{2}  x  -   \cfrac{3}{2}  \:  \: \bigg ) }}}}

{ \underline{ \boxed{{\large{\bf{ \pink{\implies {2x^{2}  -  2 \sqrt{2}  x  -  3  \:  \: }}}}}}}}

—————————————————————————

■ Zeroes of the polynomial are :-

It can be find by given formula :-

\large{\underline{\boxed{\implies{\bf{\cfrac{-b \pm \sqrt{b^{2}-4ac}}{2a}}}}}}

● First Zeroes of polynomial is

\large{\implies{\bf{\cfrac{-b + \sqrt{b^{2}-4ac}}{2a}}}}

\large{\implies{\sf{\cfrac{-(-2\sqrt{2}) + \sqrt{(-2\sqrt{2})^{2}-4(2)(-3)}}{2\times2}}}}

\large{\implies{\sf{\cfrac{2\sqrt{2} + \sqrt{8 + 24} }{4} }}}

\large{\implies{\sf{\cfrac{\sqrt{2} + \sqrt{8 + 24} }{2} }}}

\large{\implies{\sf{\cfrac{\sqrt{2} + \sqrt{32} }{2} }}}

\large{\implies{\underline{\boxed{\pink{\sf{\cfrac{3\sqrt{2} }{2} }}}}}}

● Second Zeroes of the Polynomial is

\large{\implies{\bf{\cfrac{-b - \sqrt{b^{2}-4ac}}{2a}}}}

\large{\implies{\sf{\cfrac{-(-2\sqrt{2}) - \sqrt{(-2\sqrt{2})^{2}-4(2)(-3)}}{2\times2}}}}

\large{\implies{\sf{\cfrac{2\sqrt{2} - \sqrt{8 + 24} }{4} }}}

\large{\implies{\sf{\cfrac{\sqrt{2} - \sqrt{8 + 24} }{2} }}}

\large{\implies{\sf{\cfrac{\sqrt{2} - \sqrt{32} }{2} }}}

\large{\implies{\underline{\boxed{\pink{\sf{-\cfrac{\sqrt{2} }{2} }}}}}}

Similar questions