Math, asked by gioneemaxuser, 2 months ago

Find a Quadratic polynomial the sum and product of whose zeroes are -5 and 6.​ class 10 please make step by step​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that the required polynomial be f(x) having

 \sf \: zeroes \:  \alpha  \: and \:  \beta

According to statement,

It is given that,

Sum of the zeroes of f(x) = - 5

\bf\implies \: \alpha   + \beta  =  -  \: 5

and

Product of zeroes of f(x) = 6

\bf\implies \: \alpha  \beta  = 6

We know,

The quadratic polynomial is given by

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2}  - ( \alpha  + \beta )x +  \alpha  \beta \bigg) , \: where \: k \ne \: 0

So, on substituting the values, we get

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2}  - ( - 5)x +6 \bigg) , \: where \: k \ne \: 0

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2}   + 5x +6 \bigg) , \: where \: k \ne \: 0

Additional Information :-

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: the \: zeroes \: of \:  {ax}^{2} + bx + c \: then

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

or

 \blue{ \boxed{\bf  \: \alpha  \beta  =  \frac{c}{a}}}

and

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

or

 \blue{ \boxed{\bf  \: \alpha  +  \beta  = -  \:   \frac{b}{a}}}

\rm :\longmapsto\: \alpha ,\beta, \gamma \: are \: the \: zeroes \: of \:  {ax}^{3} + b {x}^{2} + cx + d \: then

 \blue{ \boxed{\bf  \: \alpha  +  \beta  +  \gamma = -  \:   \frac{b}{a}}}

 \blue{ \boxed{\bf  \: \alpha \beta   +  \beta  \gamma  +  \gamma \alpha  =  \:   \frac{c}{a}}}

 \blue{ \boxed{\bf  \: \alpha \beta  \gamma = -  \:   \frac{d}{a}}}

Similar questions