Math, asked by laldinglianatoimoidi, 2 months ago

find a quadratic polynomial the sum and product of whose zeroes are respectively -3 and 2​

Answers

Answered by amansharma264
5

EXPLANATION.

Sum of the zeroes = - 3.

Products of the zeroes = 2.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = - 3. - - - - - (1).

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = 2. - - - - - (2).

As we know that,

Formula of the quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (-3)x + (2).

⇒ x² + 3x + 2.

                                                                                                                       

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
31

Step-by-step explanation:

 \rm \:  \alpha  \beta  = 2 \\  \rm \:  \alpha  +  \beta  =  - 3

Formula Used-

 \rm \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\  \hookrightarrow \rm \:  {x}^{2}  - ( - 3)x + 2 \\ \color{olive} \hookrightarrow \rm \: {x}^{2} + 3x + 2

Similar questions