Math, asked by subbasunita58, 1 year ago

find a quadratic polynomial,the sum and product of whose zeroes are 6 and 6 respectively.Hence find the zeroes

Answers

Answered by sagarmankoti
2

 \alpha  +  \beta  = 6 \\  \alpha  \beta  = 6 \\Polynomial = {x}^{2} - ( \alpha  +  \beta )x + ( \alpha  \beta )  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {x}^{2}  - 6x + 6 \\  \\  {x}^{2}  - 6x + 6 = 0 \\

D =  {b}^{2}  - 4ac \\   \:  \:  \:  \:  \: =  {6}^{2}  - 4 \times 1 \times 6 \\  \:  \:  \:  \:  \:  = 36 - 24 \\  \:  \:  \:  \:  \:  = 12

 \sqrt{D}  =  \sqrt{12}  = 2 \sqrt{3}

x =   \frac{ - b +  \sqrt{D} }{2a}  \:  \: or \:  \: \frac{ - b  -   \sqrt{D} }{2a} \\  \:  \:  \:  =  \frac{ 6 + 2 \sqrt{3} }{2}  \:  \:  or \:  \:  \frac{6 - 2 \sqrt{3} }{2}  \\  \:  \:  \:  = 3 +  \sqrt{3 }  \:  \:  \: or \:  \:  \: 3 -  \sqrt{3}

So,  \: the \: zeroes \: are \: 3 +  \sqrt{3}  \: and \: 3 -  \sqrt{3} .

Similar questions