Find a quadratic polynomial whise zeros are 3 + root 2 and 3 - root 2
Answers
Step-by-step explanation:
Form of a quadratic polynomial
x² - (Sum of roots)x + (multiple of roots) = 0
x² - (3+√2 + 3-√2)x + (3+√2)(3-√2) = 0
x² - 6x + 7 = 0
Question: Find a quadratic polynomial whose zeros are (3 + √2) and (3 - √2).
Solution:
The quadratic polynomial can be found out by using the general formula to frame a quadratic equation when the zeroes are given.
General Formula: (x² - (α + β)x + αβ)
Let us take α and β to be the zeroes. Therefore, let 3 + √2 be 'α' and 3 - √2 be 'β'.
Sum of the zeroes = α + β
⇒ α + β = (3 + √2) + (3 - √2)
⇒ α + β = 3 + √2 + 3 - √2
⇒ α + β = 3 + 3
⇒ α + β = 6
Product of the zeroes = α × β
⇒ α × β = (3 + √2) + (3 - √2)
Using the formula (a + b) (a - b) = a² - b²
⇒ α × β = (3)² - (√2)²
⇒ α × β = 9 - 2
⇒ α × β = 7
Using the general formula we get,
Final Answer: x² - 6x + 7.