Math, asked by enochsamuel088, 10 months ago

Find a quadratic polynomial whose one zero is root 5 and the product of the zeros is minus 2 root 5

Answers

Answered by Anonymous
45

Answer:

Hiiii friend,

Let Alpha and beta are the zeros of the Quadratic polynomial.

Alpha = 5

Product of zero = 30

(Alpha × Beta) = 30

5 × Beta = 30

Beta = 30/5 = 6

Alpha = 5 and Beta = 6

Therefore,

Sum of zeros = (Alpha + Beta) = (5+6) = 11

And,

Product of zeros = (Alpha × Beta) = (5×6) = 30

Therefore,

Required Quadratic polynomial = X²-(Alpha + Beta)X+Alpha × Beta

=> X²-(11)X +30

=> X²-11X+30

HOPE IT WILL HELP YOU........ :-)

Step-by-step explanation:

<div style="color: #FFFFFF; font: normal 18px arial, sans-serif; background-color: #347c17; border: #ff0000 4px solid; width: 70%; margin: 0 auto; padding: 4px 5px 3px 5px; -moz-border-radius: 17px; -webkit-border-radius: 17px; border-radius: 17px; -moz-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20); box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.20);"><marquee scrolldelay="250"><b><u>Hello</u> </b></marquee>

<p style="color:cyan;font-family:cursive;background:black;font size:40px;">..</p> lijiye phone apke liye B's ghar me rahhiye ok ji

<p style="color:blue;font-family:cursive;background:pink;font-size:30px;">brainlist please.</p>

Answered by bhavyagugnani
13

Answer:

Let α=√5 and αβ= -2√5

Substituting α in αβ

√5β = -2√5

β= \frac{-2\sqrt{5} }{\sqrt{5}}

∴β=-2

and, α+β= √5+(-2) =√5-2

Hence, the quadratic polynomial so formed is,

=x² - (α+β)x + αβ

=x² - (√5-2)x + (-2√5)

=x² - (√5-2)x - 2√5

PLEASE MARK MY ANSWER AS BRAINLIEST!!

Similar questions