Math, asked by krupanshu7262, 1 month ago

Find a quadratic polynomial whose roots are 3+ root 3 and 3- root 3

Answers

Answered by amansharma264
25

EXPLANATION.

Quadratic polynomial.

Whose roots = (3 + √3) and (3 - √3).

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ (3 + √3) + (3 - √3).

⇒ 3 + √3 + 3 - √3.

⇒ 6.

⇒ α + β = 6.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ (3 + √3)(3 - √3).

As we know that,

Formula of :

⇒ (x² - y²) = (x + y)(x - y).

Using this formula in equation, we get.

⇒ [(3)² - (√3)²].

⇒ [9 - 3] = 6.

⇒ αβ = 6.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (6)x + 6 = 0.

⇒ x² - 6x + 6 = 0.

                                                                                                                       

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Similar questions