Math, asked by navjot4137manes, 1 month ago

find a quadratic polynomial whose sum and product respectively of the zeroes are –2 apon 3 and 4 apon 3 also find the zeroes of the polynomial by factaristion?​

Answers

Answered by Arihant777
1

Answer:

alpha+bheta=-8/3

alpha×bheta=4/3

Step-by-step explanation:

k(x^2-(alpha+bheta)+alpha×bheta

k(x^2-(-8/3)x+4/3)

k(3x^2+8/3x+4/3)

k(3x^2+8x+4/3)

3k(3x^2+8x+4/3)

the equation is 3x^2+8x+4.

3x^2+8x+4

=3x^2+6x+2x+4

=3x(x+2) 2(x+2)

=(x+2) (3x+2)

x=-2,-2/3

Answered by 12thpáìn
2

Given

  •  \text{-2/3 and 4/3 are the zeroes of the quadratic polynomial.}

To Find

  • Quadratic Polynomial
  • Zeros of the polynomial by factorization

Solution

Sum \:   \: of  \:  \: zeros = \dfrac{ - 2}{3} +  \dfrac{4}{3}

Sum \:   \: of  \:  \: zeros = \dfrac{ - 2 + 4}{3}

 \bf{Sum \:   \: of  \:  \: zeros = \dfrac{ 2}{3} }

Product \:  \:  of \:  zeros =  \dfrac{ - 2}{ 3}  \times  \dfrac{4}{3}

 \bf{Product \:  \:  of \:  zeros =  \dfrac{ - 8}{ 9} }

we know that

  • if a and ß are the zeros of Quadratic polynomial f(x) then the polynomial f(x) is given by

~~~~~f(x)  \sf{= k\{ x²-(\alpha+\beta)x + \alpha  \beta \} }

~~~~~f(x)  \sf{= k\{ x²-(Sum ~~of ~~zeros)x + Product \:  \:  of  \:  \: zeros \} }

~~~~~f(x)  \sf{= x²- \bigg( \dfrac{2}{3}  \bigg)x + \:  \bigg(  \dfrac{ - 8}{9}  \bigg) }

~~~~~f(x)  \sf{= x²-  \dfrac{2x}{3}    -  \:   \dfrac{8}{9}   }

  • Hence the required Quadratic Polynomial f(x) is x²-2x/3 -8/9.

\\\\

___________________

\\\\

  • Now finding the Zeros from Required Quadratic Polynomial.

~~~~~f(x)      \implies      \sf{= x²-  \dfrac{2x}{3}    -  \:   \dfrac{8}{9}   }

  • Multiply both sides by 9.

{~~~~      \implies     \sf9 \bigg( x²-  \dfrac{2x}{3}    -  \:   \dfrac{8}{9}   \bigg ) =9 \times  0}

{~~~~       \implies    \sf9x²-   6x     - 8 =0}

  • Splitting Middle Term

{~~~~      \implies     \sf9x²-  12x + 6x     - 8 =0}

{~~~~       \implies    \sf3x(3x-4) +2( 3x     - 4) =0}

{~~~~      \implies     \sf(3x-4) ( 3x + 2) =0}

{~~~~      \implies     \sf x =  \dfrac{ - 2}{3}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \dfrac{4}{3} }

  • Zeros of Quadratic Polynomial be -2/3 and 4/3.
Similar questions