Math, asked by lovegangwar917, 1 year ago

Find a quadratic polynomial whose sum and product of zeros are given as -3/2root5and -1/2

Answers

Answered by KDPatak
0

Answer:

k(2x^2+3x-1)=0\:,where\:'k'\:is\:a\:constant

Step-by-step explanation:

Given:

  • sum of roots =\dfrac{-3}{2}
  • product of roots=\dfrac{-1}{2}

pre-requisite knowledge

  • sum of roots=\alpha +\beta =\dfrac{-b}{a}
  • product of zeros =\alpha\times\beta =\dfrac{c}{a}
  • x^2+(\alpha +\beta )x+(\alpha\times\beta)

solution:

\alpha +\beta =\dfrac{-b}{a}=\dfrac{-3}{2}\\\\\alpha\times\beta =\dfrac{c}{a}=\dfrac{-1}{2}\\\implies\:a=2\\b=3\\c=-1\\thus\:equation\:becomes=k(2x^2+3x-1)=0\:,where\:'k'\:is\:a\:constant

Similar questions