Hindi, asked by Srynu2016, 10 months ago

find a quadratic polynomial whose sum and zeroes are :-
(a) 5 and 17
(b) 0 and √15​

Answers

Answered by ksonakshi70
3

Answer:

a) \: sum \: of \: zeroes \:  = 5 \\  \frac{ - b}{a}  =  5 \\ product \: of \: zeroes \:  = 17 \\  \frac{c}{a}  = 17 \\ required \:  \: p(x) =  {x}^{2}  - 5x + 17 \\ b) \: sum \: of \: zeroes \:  = 0 \\  \frac{ - b}{a}  = 0 \\ product \: of \: zeroes \:  =  \sqrt{15}  \\  \frac{c}{a}  =  \sqrt{15}  \\ required \: p(x) =  {x}^{2}  +  \sqrt{15}

Answered by Aloi99
1

Given:-

a)

→α+β=5[Sum of Zeros]

→αβ=17[Product of Zeros]

b)

→α+β=0

→αβ=√15

\rule{200}{1}

To Find:-

→Quadratic Polynomial, Using Quadratic Formula?

\rule{200}{1}

AnsWer:-

★Quadratic Formula★

๛k[x²-(α+β)x+αβ]

\rule{200}{1}

a)

k[x²-(5)x+17]

→k[x²-5x+17]

•Let k=1•

→1[x²-5x+17]

→x²-5x+17 (is the required Polynomial)

\rule{200}{1}

b)

→k[x²-(0)x+√15]

→k[x²+√15]

•Let k=1•

→1[x²+√15]

→x²+√15 (is the Required Polynomial)

\rule{200}{2}

Similar questions