Math, asked by chaitanyazade6033, 1 year ago

Find a quadratic polynomial whose zeoes are -3 and 4

Answers

Answered by kartik2507
1

Answer:

x^2 - x - 12

Step-by-step explanation:

the given zeros are -3 and 4

x =  - 3 \:  \:  \:  \: x = 4 \\ x + 3 = 0 \:  \:  \: x - 4 = 0 \\ multipling \: (x + 3)(x - 4) \\  =  {x}^{2}  - 4x + 3x - 12 \\  =  {x}^{2}  - x - 12 \\  \\ other \: method \\ sum \: of \: zeros \:  \alpha  +  \beta  =  - 3 + 4 = 1 \\ product \: of \: zeros \:  =  \alpha  \beta  =  - 3 \times 4 =  - 12 \\ quadratic \: formula \\ =   {x}^{2}  - ( \alpha   + \beta )x +  \alpha  \beta  \\  =  {x}^{2}  - (1)x + ( - 12) \\  =  {x}^{2}  - x - 12

Similar questions