Math, asked by madanlalprop, 1 year ago

find a quadratic polynomial whose zeroes are -2/√3 , 3/√4​

Answers

Answered by manubansal89
1

ur answer is in attached pic

hope it help u

plz mark it best

follow me i will follow u back

Attachments:

manubansal89: wait for 5 minutes
madanlalprop: ok
manubansal89: i edited the answer plz check.it
manubansal89: and plz mark it best
manubansal89: if u wish
madanlalprop: i followed u
madanlalprop: follow me
manubansal89: i followed u back
manubansal89: c ur profile
manubansal89: thnks for marking it best and applying thanks for it
Answered by Anonymous
8

Answer:

roots are -2/√3 and 3/√4

let us suppose, the rootsare α and β

therefor the equation will be

x^2 - (α + β )x + α.β = 0

Therefor α + β = -2/√3 + 3/√4

=( -2 x 2 + 3√3)/2√3

= (- 4 + 3√3)/2√3

α.β = -2/√3 x 3/√4

= -6 / 2√3

= -3 / √3

= -√3

therefor substitute the values of( α+β) and α.β in equation

x^2 - (α + β )x + α.β = 0

x^2 - ((- 4 + 3√3)/2√3)x + (-√3)

x^2 + (( 4 - 3√3 )/2√3)x - (√3 )

The equation is

x^2 + (( 4 - 3√3 )/2√3)x - (√3 )

Similar questions