Math, asked by ShreeChan, 10 months ago

Find a quadratic polynomial whose zeroes are (2-5√2) and (2+5√2)​

Answers

Answered by Anonymous
1

Answer:

x² - 4x - 46

Step-by-step explanation:

Attachments:
Answered by mysticd
0

 Let \: \alpha = (2-5\sqrt{2}) \: and \\\beta = (2+5\sqrt{2})\: are  \: zeroes \: of \: a \: Quadratic \\polynomial

 i) Sum \: of \: the \: zeroes \\= \alpha + \beta \\= (2-5\sqrt{2}) + (2+5\sqrt{2}) \\= 2-5\sqrt{2}+ 2+5\sqrt{2}\\= 4 \: --(1)

 ii) Product \: of \: the \: zeroes \\= \alpha  \beta \\= (2-5\sqrt{2})  (2+5\sqrt{2}) \\= 2^{2} - (5\sqrt{2})^{2}\\= 4 - 50 \\= -46 \: --(2)

 \underline { \blue { Form\: a \: Quadratic \: polynomial : }}

 \blue { k[ x^{2} - (\alpha + \beta )x + \alpha \beta ) ] }

 \red{ Required \: polynomial } \\= k(x^{2} - 4x -46)

 We \: can \: put \: different \: values \: of \:k

 When \: k = 1 , \: the \: Quadratic \: polynomial\\will \:be \: \green { x^{2} - 4x - 46 }

•••♪

Similar questions