Math, asked by xtniintx, 4 months ago

Find a quadratic polynomial whose zeroes are 2 - 5√2 and 2 + 5√2

Answers

Answered by snehitha2
3

Answer :

The required polynomial is  x² - 4x - 46

Step-by-step explanation :

Quadratic Polynomials :

✯ It is a polynomial of degree 2

✯ General form :

     ax² + bx + c  = 0

✯ Determinant, D = b² - 4ac

✯ Based on the value of Determinant, we can define the nature of roots.

   D > 0 ; real and unequal roots

   D = 0 ; real and equal roots

   D < 0 ; no real roots i.e., imaginary

✯ Relationship between zeroes and coefficients :

    ✩ Sum of zeroes = -b/a

    ✩ Product of zeroes = c/a

________________________________

Given zeroes of the quadratic polynomial,

2 - 5√2 and 2 + 5√2

⇒ Sum of zeroes

       = (2 - 5√2) + (2 + 5√2)

       = 2 - 5√2 + 2 + 5√2

       = 4

⇒ Product of zeroes

      = (2 - 5√2) (2 + 5√2)

      = 2(2 + 5√2) - 5√2(2 + 5√2)

      = 4 + 10√2 - 10√2 - 5√2(5√2)

      = 4 - 25(2)

      = 4 - 50

      = -46

The quadratic polynomial will be in the form of :

x² - (sum of zeroes)x + (product of zeroes)

x² - 4x + (-46)

x² - 4x - 46

The required polynomial is x² - 4x - 46

Similar questions