Math, asked by trigunayatbabita0196, 2 months ago

Find a quadratic polynomial whose zeroes are 2√5-3√2 and 2√5+3√2.

Answers

Answered by suhail2070
2

Answer:

 {x}^{2}  - 4 \sqrt{5} x + 2 = 0

Step-by-step explanation:

s = 2 \sqrt{5}  - 3 \sqrt{2}  + 2 \sqrt{5}  + 3 \sqrt{2}  = 4 \sqrt{5}  \\  \\ p = (2 \sqrt{5}  - 3 \sqrt{2} )(2 \sqrt{5}  + 3 \sqrt{2} ) \\  \\  =  {(2 \sqrt{5} )}^{2}  -  {(3 \sqrt{2}) }^{2}  \\  \\  = 20 - 18 \\  \\  p= 2 \\  \\ required \: equation \: is \:  \:  \\  \\  {x}^{2}  - sx + p = 0 \\   {x }^{2}  - 4 \sqrt{5} x + 2 = 0

Answered by rajeebsc001
1

Answer:

x²-4√5x+2 = 0

Step-by-step explanation:

quadratic equation,

x²-(α+β)x+αβ = 0

α = 2√5-3√2 β = 2√5-3√2

α+β = 2√5-3√2+2√5+3√2

= 4√5

αβ = (2√5-3√2)(2√5+3√2)

= (2√5)²-(3√2)²

= 20-18 = 2

x²-(α+β)x+αβ = 0

x²-4√5x+2 = 0

Similar questions