Math, asked by luckyjaingenius, 9 months ago

Find a quadratic polynomial whose zeroes are 2+√5 and -√5​

Answers

Answered by SomeOneThere
2

Step-by-step explanation:

quadratic equation :

x² - (sum of zeroes) x + (product of zeroes)

zeroes ==

 \alpha  = 2 +  \sqrt{5}

 \beta  =  -  \sqrt{5}

therefore,

 {x}^{2}  - (2 +  \sqrt{5}  + ( -  \sqrt{5} ))x + ((2 +  \sqrt{5}) \times ( -  \sqrt{5} ))

  {x}^{2}  - 2x + ( - 2 \sqrt{5}  - 5)

 {x}^{2}  - 2x - 2 \sqrt{5}  - 5

Similar questions