Math, asked by tapesh1374, 9 months ago

Find a quadratic polynomial whose zeroes are 3 + √2 and 3 – √2.​

Answers

Answered by Anonymous
57

Answer :

The required quadratic polynomial is :

x² - 6x + 7

Given :

  • The zeroes of a quadratic polynomial are : 3 + √2 and 3 - √2

To Find :

  • The quadratic polynomial having the given zeroes

Formula to be used :

If sum and product of zeroes of a quadratic polynomial are given then the polynomial can be expressed as :

\rm x^{2} -(Sum \: of \: the \: zeroes)x + Product \: of \: the \: zeroes

Solution :

Given the zeroes 3 + √2 and 3 - √2

\rm  \: Sum \: of \: the \: zeroes = 3 + \sqrt{2} + 3 - \sqrt{2} \\\\ \rm \implies Sum \: of \: the \: zeroes = 6

Again ,

\rm Product \: of \: the \: zeroes = (3+\sqrt{2})(3-\sqrt{2}) \\\\ \rm \implies Product \: of \: the \: zeroes = 3^{2} -(\sqrt{2})^{2} \\\\ \rm \implies Product \: of \: the \: zeroes = 9 - 2 \\\\ \rm \implies Product \: of \: the \: zeroes= 7

Thus the quadratic equation is :

\rm \dashrightarrow x^{2} - 6x + 7


shinchan142: bro
shinchan142: comments are again open !
Anonymous: Awesome!
Anonymous: Thanks
Anonymous: :p
Answered by mddilshad11ab
19

\sf\large\underline{Given:}

  • \sf{The\: zeroes\:of\: polynomial=3+\sqrt{2}\:and\:3-\sqrt{2}}

\sf\large\underline{To\: Find:}

  • \sf{The\: Quardric\: polynomial=?}

\sf\large\underline{Solution:}

  • At first we have to find the sum of two zeroes and the product of two zeroes

\rm{\implies Sum\:of\:two\: zeroes}

\rm{\implies Sum=3+\sqrt{2}+3-\sqrt{2}}

\rm{\implies Sum=3+3}

\rm{\implies Sum=6}

\rm{\implies Now,\: product\:of\:two\: zeroes}

\rm{\implies Product=(3+\sqrt{2})*(3-\sqrt{2})}

\rm{\implies Product=9-3\sqrt{2}+3\sqrt{2}-(\sqrt{2})^2}

\rm{\implies Product=9-2}

\rm{\implies Product=7}

  • Now, calculate quardric polynomial

\sf\large\underline{Formula\: used:}

\rm{\implies x^2-(sum\:of\: zeroes)x+(product\:of\:zero)}

\rm{\implies Polynomial=x^2-6x+7}

Hence,

\rm{\implies Quardric\: polynomial=x^2-6x+7}

Similar questions