Math, asked by guoshanbarawal, 1 year ago

find a quadratic polynomial whose zeroes are 3+√5/5 and 3-√5/5​

Answers

Answered by Anonymous
31

Answer:

25x { }^{2}   - 30x + 4 = 0

Step-by-step explanation:

consider the zeroes be X

now

the first zero

x =  \frac{3 +  \sqrt{5} }{5}

solving

5x - 3 -  \sqrt{5}  = 0.....(1)

now the second zero

x =  \frac{3 -  \sqrt{5} }{5}

if we solve it we get

5x - 3 +  \sqrt{5}  = 0.....eq(2)

multiplying equation (1) and (2)

(5x - 3 -  \sqrt{5} )(5x - 3 +  \sqrt{5} ) = 0

using identities

(a + b) { }^{2}  = a {}^{2}  + b {}^{2}  - 2ab

(a + b)(a - b) =  {a}^{2}  - b {}^{2}

(5x - 3) {}^{2}  - ( \sqrt{5} ) {}^{2}

25x  {}^{2} + 9  - 30x - 5 = 0

25x {}^{2}  - 30x + 4 = 0


guoshanbarawal: thanku
guoshanbarawal: mam
guoshanbarawal: how r u
Answered by Anonymous
6

Answer:

=x²-6x-116

Step-by-step explanation:

zeroes of polynomial are 3+√5/5 and 3-√5/5​

let α=3+5√5 , β=3-5√5

so α+β=3+5√5+3-5√5=6

αβ =(3+5√5)(3-5√5)

=3²-(5√5)²=9-125=-116

the polynomial with zeros α and β is:

f(x)=x²-(α+β)x+αβ

=x²-6x-116

Similar questions