Find a quadratic polynomial whose zeroes are 3+√5/5 and 3-√5/5.
CORRECT ONE WILL BE MARKED AS BRAINLIEST!!!
Answers
Answered by
1
▁ ▂ ▄ ▅ ▆ ▇ █ нι fяιєи∂ █ ▇ ▆ ▅ ▄ ▂ ▁
°°°·.°·..·°¯°·._.· γουя αиѕωєя ·._.·°¯°·.·° .·°°°
ℓєτ α αи∂ β ϐє τнє zєяοєѕ οf τнє գυα∂яατιϲ ροℓγиοмιαℓ.
τнєи,
---------
α = (3 + √5)/5 αи∂ β = (3 - √5)/5
иοω,
----------
fοямυℓα = ϰ² - (α + β) + αβ
= ϰ² - {(3 + √5)/5 + (3 - √5)/5} + (3 + √5)/5 × (3 - √5)/5
= ϰ² - (3 + √5 + 3 - √5)/5 + {(3)² - (√5)²}/25
= ϰ² - 6/5 + (9 - 5)/25
= ϰ² - 6/5 + 4/25
нορє ιτ нєℓρѕ
°°°·.°·..·°¯°·._.· γουя αиѕωєя ·._.·°¯°·.·° .·°°°
ℓєτ α αи∂ β ϐє τнє zєяοєѕ οf τнє գυα∂яατιϲ ροℓγиοмιαℓ.
τнєи,
---------
α = (3 + √5)/5 αи∂ β = (3 - √5)/5
иοω,
----------
fοямυℓα = ϰ² - (α + β) + αβ
= ϰ² - {(3 + √5)/5 + (3 - √5)/5} + (3 + √5)/5 × (3 - √5)/5
= ϰ² - (3 + √5 + 3 - √5)/5 + {(3)² - (√5)²}/25
= ϰ² - 6/5 + (9 - 5)/25
= ϰ² - 6/5 + 4/25
нορє ιτ нєℓρѕ
Similar questions