Math, asked by manaan, 1 year ago

find a quadratic polynomial whose zeroes are √3+√5 and √5-√3.

Answers

Answered by dibyendu2
2
x^2-(root3+ root5+root5-root3)x+(root5+root3)(root5-root3)=0
x^2-2root5 x+2=0




Mark as brainliest plz
Answered by Anonymous
1

The quadratic polynomial whose zeroes are,

5 \sqrt{3} ,5 -  \sqrt{3}

 \alpha , \beta  \: is \: f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

where k is any non-zero real no.

THE QUADRATIC POLY POLYNOMIAL WHOSE ZEROES ARE

5 \sqrt{3} ,5 -  \sqrt{3}

 f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

 f(x) = k[ {x}^{2} - ( 5  \cancel{ +  \sqrt{3}}  + 5  \cancel{ -  \sqrt{3}} )x +    (5 +  \sqrt{3}   ) (5 -  \sqrt{3}  ) ]

 f(x) = k[ {x}^{2} -10x + ( {5)}^{2}  -  ({ \sqrt{3} )}^{2}  ]

 f(x) = k[ {x}^{2} -10x + (25  - 3)]

 f(x) = k[ {x}^{2} -10x + 22]

so, the QUADRATIC polynomial is

 f(x) = k[ {x}^{2} -10x + 22]

Similar questions