Math, asked by insannoobda, 1 month ago

Find a quadratic polynomial whose zeroes are -3 and 2.​

Answers

Answered by Aishujaat
4

Answer:

x²+x-6=0

Step-by-step explanation:

hope it help u out please mark it brainliest and follow me

Answered by Anonymous
108

Given :-

  • Zeroes of quadratic polynomial are -3 and 2

To Find :-

  • Required quadratic polynomial

Solution :-

We are given, Zeros of quadratic polynomial are -3 and 2.

\boxed{\pink{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\qquad\leadsto\quad \sf -3 +2\\

\qquad\leadsto\quad \sf -1\\

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\qquad\leadsto\quad \sf -3 \times 2\\

\qquad\leadsto\quad \sf -6 \\

Quadratic polynomial :-

\qquad ☀️ x²-(sum of zeros)x+product of zeros 

\qquad\leadsto\quad \sf x²- (-1) x+ (-6)\\

\pink{\qquad\leadsto\quad \sf x²+x -6}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\qquad \qquad \:\bigstar \:\:\underline {\pmb{ \: Know \: More  \:\::-}}\:\\\\

The quadratic formula is _

\boxed{\pmb  {\mathfrak { x = \dfrac{ - b \pm \sqrt{ b^2 - 4ac }}{ 2a} }}}

It can be written as :-

\qquad \pmb  {\mathfrak{ \alpha = \dfrac{-b + \sqrt{b^2 - 4ac }}{ 2a }} }

\qquad \pmb  {\mathfrak{\beta = \dfrac{ - b - \sqrt{ b^2 - 4ac }}{ 2a } }}

Where:-

  • α , β are the roots of the quadratic equation . b² - 4ac is a discriminate .

The conditions are as follows :-

\qquad ☀️If D = 0

  • The roots are equal and real .

\qquad ☀️If D > 0

  • The roots are unequal and rational ( if it is a perfect square )

\qquad ☀️If D > 0

  • The roots are distinct and irrational ( if it is not a perfect square )

\qquad ☀️If D < 0

  • The roots are unequal and imaginary .

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions