Math, asked by gameroggyhindustani, 5 months ago

Find a quadratic polynomial whose zeroes are 3+ V5 and
3 -   \sqrt{5  }

Answers

Answered by Anonymous
46

 \huge \orange{ \overbrace{ \red{\underbrace \color{blue} {\underbrace \color{black}{\colorbox{lime}{ {\red \: {☘Answer ☘ }}}}}}}}

QUESTION✪:-

Find a quadratic polynomial whose zeroes are 3 + \sqrt{5 } and

3 - \sqrt{5 }

ANSWER✪:-

Zeros of the polynomial are

  • 3 + \sqrt{5 }
  • 3 - \sqrt{5 }

SUM OF THE ZEROS

3 + \sqrt{5 } +3 - \sqrt{5 }

 6

PRODUCT OF ZEROS

(3 +  \sqrt{5} )(3 -  \sqrt{5} )

It is in the form of

( {a}^{2}  -  {b}^{2} ) =  (a + b)(a - b)

so,

 {(3)}^{2}  -  {( \sqrt{5)} }^{2}

9 - 5

4

QUADRATIC POLYNOMIAL :

 {x}^{2} - (sum \: of \: zeros)x + (product \: of \: zeros)

 {x}^{2}  - 6x  + 4

Similar questions