Math, asked by shakilsiddiqui25045, 5 months ago


Find a quadratic polynomial whose zeroes are 3and -4.​

Answers

Answered by gj4840
0

Answer:

x2_x+4

hope will help u

Answered by Niharikamishra24
5

{\underline{\sf{To\:Find}}}

Find the Quadratic polynomial whose zeroes are 3 and -4

{\underline{\sf{Theory}}}

If   \sf\alpha \: and \beta are the zeros of a quadratic polynomial f(x) . Then the polynomial f( x) is given by

 \sf \:f(x) = k(x {}^{2}  - ( \alpha   +  \beta )x +  \alpha  \beta )

or

 \sf \: f(x) = k(x {}^{2}  - (sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes)

{\underline{\sf{Answer}}}

Let the zeroes of Quadratic equations be α and ß.

Now , we have

\sf\:\alpha=3

and \sf\beta=-4

Now ,

\sf\blue{Sum of zeroes=\alpha+\beta}

\sf\implies\alpha+\beta=3+(-4)

\sf\implies\alpha+\beta=3-4

\sf\implies\alpha+\beta=-1....(1)

and

\sf\pink{Product of zeroes=\alpha\times\beta}

\sf\implies\alpha\times\beta=3\times(-4)

\sf\implies\alpha\times\beta=-12...(2)

Thus,

The required Quadratic equation is

 \sf \:f(x) = k(x {}^{2}  - ( \alpha   +  \beta )x +  \alpha  \beta )

Put the values of Equation (1)&(2)

Then ,

\sf\:f(x)=k[x^2-(-1)x+(-12)]

\sf\implies\:f(x)=k(x^2+x-12)

Hence , the required Quadratic equation is

\sf\purple{f(x)=k(x^2+x-12)}

where k = any non- zero real number

Similar questions