Math, asked by murgewala7389, 1 year ago

Find a quadratic polynomial whose zeroes are 5 + root 2 and 5 minus root 2

Answers

Answered by deepsen640
43

Answer:

x² - 10x + 23

Step-by-step explanation:

given that,

zeros of the quadratic equation,

5 + √2 and 5 - √2

we know that,

quadratic polinomial when zeros are given then,

equation = x² - sum of zeros × x + product of zeros

here,

sum of zeros = 5 + √2 + 5 - √2

= 10

and

product of zeros = (5 + √2)(5 - √2)

= 23

now,

putting the values,

x² - 10x + 23

so,

the required quadratic equation will be,

x² - 10x + 23

Answered by BrainlyKing5
14

Answer:

\bigstar\: \underline{\boxed{\mathsf{x^2 -10x + 23 }}} \bigstar

Step-by-step explanation:

\underline{\underline{\textsf{Given That...}}}

\mathsf{zeroes \: or \: root \: of \: a \: quadratic \: equation \: are \: 5 +  \sqrt{2} \:  and \: 5 -  \sqrt{2} }

\underline{\underline{\mathfrak{Solution}}}

\textsf{Now we know that General form of quadratic polynomial is }

\bigstar \boxed{\mathsf{ax^2 + bx + c }}

\mathsf{Where\: 'a' , 'b' \:and \:'c'\: are\: coefficient\: of\: x^2 , x \:and \:constant \: respectively.}

\textsf{Now we know that,}

\bigstar \mathsf{Sum\: of\:zeroes\:=\: \dfrac{-b}{a}}

\textsf{and}

\bigstar \mathsf{Product\: of\:zeroes\:=\: \dfrac{c}{a}}

\underline{\textsf{Therefore here we have..}}

\implies \mathsf{(5+\sqrt{2})(5-\sqrt{2}) \:=\:\dfrac{c}{a}}

\implies \mathsf{{(5)}^{2}-{(\sqrt{2}}^{2}\:=\:\dfrac{c}{a}} (By (a+b)(a-b)=a^2-b^2) )

\implies \mathsf{25 - 2 \:=\:\dfrac{c}{a}}

\implies \mathsf{\dfrac{23}{1} \:=\:\dfrac{c}{a}} \rule{40}{1} eq(1)

\textsf{Now, we have,}

\mathsf{Sum\: of\:zeroes\:=\: \dfrac{-b}{a}}

\textsf{That is}

\implies \mathsf{5 +\sqrt{2} + 5-\sqrt{2} = \dfrac{-b}{a}}

\implies \mathsf{5 + 5\: =\: \dfrac{-b}{a}}

\implies \mathsf{\dfrac{10}{1} = \dfrac{-b}{a} } \rule{40}{1} eq(2)

\textsf{Now by comparing eq (1) and eq (2) we have...}

\mathsf{ a = 1 , b= (-10)\: and \: c = 23 }

\textsf{Now putting the values in General form of quadratic polynomial we have,}

\implies \mathsf{1x^2 -10x + 23 }

\underline{\underline{\textsf{Therefore Required Quadratic polynomial is }}}

\underline{\boxed{\boxed{\mathsf{x^2 -10x + 23 }}}}

Similar questions