Math, asked by sadhna244, 11 months ago

find a quadratic polynomial whose zeroes are 5+ root 3 and 5 - root 3​

Answers

Answered by ButterFliee
16

GIVEN:

  • Zeroes = 5 + √3 , 5 - √3

TO FIND:

  • Find a quadratic polynomial ?

SOLUTION:

Let

  • \alpha = 5 + √3
  • \beta = 5 – √3

We have to find the sum of Zeroes:

  • Sum of Zeroes = 5 + 3 + 5 3
  • Sum of Zeroes = 10

And, the product of Zeroes are:-

  • Product of Zeroes = (5 + 3)(5 3)
  • Product of Zeroes = 25 53 + 53 3
  • Product of Zeroes = 22

We know that, the formation of a quadratic polynomial is:-

\large{\boxed{\bf{\star \: POLYNOMIAL = x^2 -sx + p \: \star}}}

Where,

  • s = Sum of Zeroes
  • p = Product of Zeroes

According to question:-

On putting the given values in the formula, we get

\rm{\hookrightarrow x^2 -(10)x + 22 }

\bf{\hookrightarrow x^2  -10x + 22}

Hence, the quadratic polynomial is 10x + 22

______________________

Answered by nisha382
13

Answer:

\huge\bold\star\red{Answer}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Given:-

  • zeroes of a polynomial which are (5+√3) and (5-√3)

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To find:-

  • the polynomial

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution:-

  • If we are given zeroes of a polynomial,we have to use the given formula to find the polynomial

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Required formula:-

 {x}^{2}  - (sum \: of \: zeroes) + product \: of \: zeroes

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Now,

sum of zeroes=(5+√3)+(5-√3)

=10

product of zeroes=(5+√3)(5-√3)

=5^2-(√3)^2

=25-3

=22

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Putting the value of sum and product of zeroes,we get

 {x}^{2}  - 10x + 22

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

hence,the required polynomial is

 {x}^{2}  - 10x + 22

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\huge\green{Hope\:this\:help\:you}

Similar questions