find a quadratic polynomial whose zeroes are 5+ root 3 and 5 - root 3
Answers
GIVEN:
- Zeroes = 5 + √3 , 5 - √3
TO FIND:
- Find a quadratic polynomial ?
SOLUTION:
Let
= 5 + √3
= 5 – √3
We have to find the sum of Zeroes:
- Sum of Zeroes = 5 + √3 + 5 –√3
- Sum of Zeroes = 10
And, the product of Zeroes are:-
- Product of Zeroes = (5 + √3)(5 – √3)
- Product of Zeroes = 25 –5√3 + 5√3 –3
- Product of Zeroes = 22
We know that, the formation of a quadratic polynomial is:-
Where,
- s = Sum of Zeroes
- p = Product of Zeroes
According to question:-
On putting the given values in the formula, we get
❝ Hence, the quadratic polynomial is x² –10x + 22 ❞
______________________
Answer:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Given:-
- zeroes of a polynomial which are (5+√3) and (5-√3)
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
To find:-
- the polynomial
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Solution:-
- If we are given zeroes of a polynomial,we have to use the given formula to find the polynomial
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Required formula:-
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Now,
sum of zeroes=(5+√3)+(5-√3)
=10
product of zeroes=(5+√3)(5-√3)
=5^2-(√3)^2
=25-3
=22
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Putting the value of sum and product of zeroes,we get
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
hence,the required polynomial is
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃