Math, asked by Aayushijoshi5426, 1 year ago

find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial :

ax2+bx+c a and c are not equal to 0

Answers

Answered by Khushi0511
172
Hii There!!
Here is ur answer...


Mark as Brainliest
Attachments:
Answered by mysticd
45

Answer:

Required polynomial is cx²+bx+a

Step-by-step explanation:

Let\:\alpha \:and\:\beta\:are\\zeroes \:of \: quadratic\: equation\\ax^{2}+bx+c, \:a≠0, c≠0

i) \alpha+\beta= \frac{-b}{a}\:---(1)

ii)\alpha \beta= \frac{c}{a}\:---(2)

iii)\frac{1}{\alpha}+\frac{1}{\beta}

=\frac{\beta+\alpha}{\alpha \beta}

=\frac{\frac{-b}{a}}{\frac{c}{a}}\\=\frac{-b}{c}\:--(3)

iv) \frac{1}{\alpha}\times \frac{1}{\beta}\\ = \frac{1}{\alpha \beta}\\=\frac{1}{\frac{c}{a}}\\=\frac{a}{c}\:--(4)

Now,\\Form \: of \: a\: polynomial \:whose \\zeroes \: are \: \frac{1}{\alpha}\:and\:\frac{1}{\beta}\\(Given \: reciprocals \:of \: above \: polynomial )\\is:

k[x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+\alpha \beta ]

=k[x^2-\left(\frac{\beta+\alpha}{\alpha \beta}\right)+\alpha \beta]

=k[x^{2}-\left(\frac{-b}{c}\right)x+\frac{a}{c}]

/* From (3) and (4) */

=k[x^{2}+\frac{b}{c}x +\frac{a}{c}]

/* For all real values of k it is true */

If k = c , we get

Required polynomial is cx²+bx+a

Similar questions