Math, asked by sangitamishr1212, 9 months ago

find a quadratic polynomial whose zeroes are the reciprocal of the zeroes of 4xsquare -3x -1​

Answers

Answered by Mamaraven
0

hope it helps you to find out the correct answer

Attachments:
Answered by Anonymous
5

Answer:-

\sf{The \ required \ quadratic \ polynomial \ is}

\sf{x^{2}+3x-4.}

Given:

  • The given polynomial is \sf{4x^{2}-3x-1}

To find:

  • To find a quadratic polynomial whose are reciprocal of the zeroes of the given polynomial.

Solution:

\sf{Let \ the \ zeroes \ of \ the \ polynomial \ be \ \alpha \ and \ \beta}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{4x^{2}-3x-1}}

\sf{Here, \ a=4, \ b=-3 \ and \ c=-1}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=\frac{3}{4}...(1)}}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\therefore{\alpha\beta=\frac{-1}{4}...(2)}}

___________________________________

\sf{Let \ the \ zeroes \ of \ required \ polynomial}

\sf{be \ M \ and \ N.}

\sf{\therefore{M=\frac{1}{\alpha} \ and \ N=\frac{1}{\beta}}}

\sf{M+N=\frac{1}{\alpha}+\frac{1}{\beta}}

\sf{\therefore{M+N=\frac{\alpha+\beta}{\alpha\beta}}}

\sf{...from \ (1) \ and \ (2)}

\sf{\therefore{M+N=\frac{\frac{3}{4}}{\frac{-1}{4}}}}

\sf{\therefore{M+N=-3...(3)}}

\sf{M\times \ N=\frac{1}{\alpha}\times\frac{1}{\beta}}

\sf{\therefore{M\times \ N=\frac{1}{\alpha\beta}}}

\sf{...from \ (2)}

\sf{\therefore{M\times \ N=\frac{1}{\frac{-1}{4}}}}

\sf{\therefore{M\times \ N=-4....(4)}}

\sf{Quadratic \ polynomial \ is}

\sf{\implies{x^{2}-(M+N)x+M\times \ N}}

\sf{...from \ (3) \ and \ (4)}

\sf{\implies{x^{2}-(-3)x+(-4)}}

\sf{\implies{x^{2}+3x-4}}

\sf\purple{\tt{\therefore{The \ required \ quadratic \ polynomial \ is}}}

\sf\purple{\tt{x^{2}+3x-4.}}

Similar questions