Math, asked by sobhadevi1227, 3 months ago

find a quadratic polynomial whose zeros are -1 and 2/3​

Answers

Answered by vaishnavi1177
1

ɢɪᴠᴇɴ :

Zeroes of the quadratic polynomial are -1 & 2/3.

i.e. \:  \:  \: \alpha  =  - 1 \:  \\  \:  \:  \:  \:  \:  \:  \beta  =  \frac{2}{3}

ᴛᴏ ꜰɪɴᴅ:

Quadratic polynomial

ꜱᴏʟᴜᴛɪᴏɴ:

Quadratic polynomial is

➡ {x}^{2}    - (\alpha  +  \beta) x +  \alpha  \beta  = 0   \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \\ \\  ➡ {x}^{2}  - ( - 1 +  \frac{2}{3} )x + ( - 1)( \frac{2}{3} ) = 0  \\ \\ ➡ {x }^{2}  - ( \frac{ - 3 + 2}{3} )x -  \frac{2}{3}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \\ \\ ➡  {x}^{2}  -(   \frac{ - 1}{3} )x  - \frac{2}{3}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ ➡ {x}^{2}  +  \frac{1}{3} x - \frac{2}{3}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \\   \\ ➡3({x}^{2}  +  \frac{1}{3} x - \frac{2}{3} ) = 3(0) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  ➡3 {x}^{2}  + x - 2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answered by ishpreet09
2

Answer:

3x²+x-2

Step-by-step explanation:

General form is

p(x)=k{x²-(sum of zeroes)x+(product of zeroes)

k{x²-(-1+2/3)x+2/3×(-1)}

k{x²-(-3+2/3)x-2/3

k{x²-(-1/3)x-2/3} [denominator value is 3 so k=3]

3{x²-(-1/3)x-2/3}

3x²+x-2 is the answer you want...

Hope it helps...please mark my answer as brainliest

Similar questions