Math, asked by Marksman928, 7 months ago

Find a quadratic polynomial whose zeros are -12and 4

Answers

Answered by sathiNandi
0

Answer:

the quadratic polynomial is x²+8-48

Answered by pulakmath007
33

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

A quadratic polynomial the sum and product of whose zeroes are - 12 and 4 respectively

TO FIND

The quadratic polynomial

FORMULA TO BE IMPLEMENTED

The quadratic polynomial whose zeroes are given can be written as

 {x}^{2}  - ( \:  \: sum \:  \: of \:  \: the \:  \: zeros)x  \:  +  \:  \: ( \: product \:  \: of \:  \: the \:  \: zeros)

EVALUATION

The required Quadratic polynomial is

  = {x}^{2}  - ( \:  \: sum \:  \: of \:  \: the \:  \: zeros)x  \:  +  \:  \: ( \: product \:  \: of \:  \: the \:  \: zeros)

 =  {x}^{2}  - ( - 12 + 4)x + ( - 12 \times 4)

 =  {x}^{2}  + 8x - 48

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION

A general equation of quadratic equation is

a {x}^{2} +  bx + c = 0

Now one of the way to solve this equation is by SRIDHAR ACHARYYA formula

For any quadratic equation

a {x}^{2} +  bx + c = 0

The roots are given by

 \displaystyle \: x =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

Similar questions