Math, asked by sarvandas204, 10 months ago

Find a quadratic polynomial whose zeros are √15 and -√15

Answers

Answered by Anonymous
1

 \alpha =  { \sqrt{15} } \\    \beta  =  -  \sqrt{15}  \\  \\ p(x) = k[ {x}^{2}  - ( \alpha   + \beta )x +  \alpha  \beta]  \\ p(x) = k [{x}^{2}  - (  \sqrt{15}   -  \sqrt{15}  )x +  ( \sqrt{15} )( -  \sqrt{15} )]  \\  p(x) = k[ {x}^{2}   -   15 ]\\ for \: k = 1 \\ p(x) =  {x}^{2}  - 15

_______________

@aaaeeeiiiooouuu :)

Answered by DrNykterstein
3

Zeroes:

α = √15

β = -√15

Now,

equation = (x + α)(x - β)

=> (x + √15)(x -√15))

=> x² - √15x + √15x - 15

=> x² - 15

Hence, The quadratic equation in standard form is:

x² + 0x - 15

Similar questions