Math, asked by meenakshi1974meena, 3 months ago

find a quadratic polynomial whose zeros are -3 and 2​

Answers

Answered by aryan073
2

Given :

• The zeros of the quadratic equation is -3 and 2

\bullet\sf{\alpha =-3}

\\ \bullet\sf{\beta=2}

To Find :

• The quadratic equation =?

Formula :

  \bullet \sf \: sum \: of \: the \: zeros =   \alpha  +  \beta

 \\  \bullet \sf \: the \: product \: of \: zeros =  \alpha  \beta

The formation of quadratic equation is :

 \red \bigstar \boxed{ \sf{ {x}^{2}  - ( \alpha  +  \beta )x  +  \alpha  \beta  = 0}}

Solution :

 \bullet \sf \: \alpha  =  - 3

 \bullet \sf \:  \beta  = 2

 \implies \bf \: sum \: of \: zeros =  \alpha  +  \beta

 \\  \implies \sf \: sum \: of \: zeros =  - 3 + 2 \\ \\    \implies \sf \: sum \: of \: zeros = 1

 \implies \bf \: product \: of \: zeros =  \alpha  \beta

 \\  \implies \sf product \: of \: zeros =  \alpha  \beta  \\  \\  \implies \sf \: product \: of \: zeros =  - 3 \times 2 \\  \\  \implies \sf \: product \: of \: zeros =  - 6

By using Formation of quadratic equation :

 \implies \sf \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  \\  \implies \sf \:  {x}^{2}  - ( - 3 + 2)x + ( - 3 \times 2) = 0 \\  \\  \implies \sf \:  {x}^{2}  - ( - 1)x  - 6 = 0 \\  \\  \implies \sf \:  {x}^{2}  + x - 6 = 0

The Quadratic equation will be +x-6=0 .

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{zeros \: of \: polynomial} \\ &\sf{ -  \: 3 \: and \: 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find  -  \begin{cases} &\sf{a \: quadratic \: polynomial}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

 : \implies \tt \: Let \:  \alpha  =  - 3 \: and \:  \beta  = 2

 : \implies \tt \: Sum \:  of  \: zeros \:  =  \alpha  +  \beta  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: =  \tt \:  - 3 \:  +  \: 2

 : \implies \tt \:  \boxed{ \purple{ \rm \:  \alpha  +  \beta  =  - 1}}

★ Now,

 : \implies \tt \: Product  \: of \:  zeros \:  =  \alpha  \beta  = ( - 3) \times (2)

: \implies \tt \:  \boxed{ \purple{ \rm \:  \alpha    \beta  =   - 6}}

★ We know that, the quadratic polynomial is given by

\tt \:  f(x) = k \bigg(  {x}^{2}  - (Sum  \: of \:  zeros)x + Product \:  of  \: zeros\bigg)

★ where, k is non zero real number.

 : \implies \tt \: f(x) = k \bigg(  {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  \bigg)

: \implies \tt \: f(x) = k \bigg(  {x}^{2} - (  - 1 )x  - 6  \bigg)

: \implies \tt \: f(x) = k \bigg(  {x}^{2}  +  x  - 6  \bigg)

Similar questions