find a quadratic polynomial whose zeros are 3 + root 5 divided by 5 and 3 minus root 5 / 5
Attachments:
Answers
Answered by
1
Answer:
25x { }^{2} - 30x + 4 = 025x
2
−30x+4=0
Step-by-step explanation
consider the zeroes be X
now
the first zero
x = \frac{3 + \sqrt{5} }{5}x=
5
3+
5
solving
5x - 3 - \sqrt{5} = 0.....(1)5x−3−
5
=0.....(1)
now the second zero
x = \frac{3 - \sqrt{5} }{5}x=
5
3−
5
if we solve it we get
5x - 3 + \sqrt{5} = 0.....eq(2)5x−3+
5
=0.....eq(2)
multiplying equation (1) and (2)
(5x - 3 - \sqrt{5} )(5x - 3 + \sqrt{5} ) = 0(5x−3−
5
)(5x−3+
5
)=0
using identities
(a + b) { }^{2} = a {}^{2} + b {}^{2} - 2ab(a+b)
2
=a
2
+b
2
−2ab
(a + b)(a - b) = {a}^{2} - b {}^{2}(a+b)(a−b)=a
2
−b
2
(5x - 3) {}^{2} - ( \sqrt{5} ) {}^{2}(5x−3)
2
−(
5
)
2
25x {}^{2} + 9 - 30x - 5 = 025x
2
+9−30x−5=0
25x {}^{2} - 30x + 4 = 025x
2
−30x+4=0
Similar questions