Math, asked by lewiscook9053, 8 months ago

Find a quadratic polynomial whose zeros are 3+root5/2 and 3-root5/2

Answers

Answered by viperisbackagain
0

Question

Find a quadratic polynomial whose zeros are 3+root5/2 and 3-root5/2

Answer

here we know that

 sum \: of \: zeros \:  =  \alpha  +  \beta  \\  \\ product \: of \: zeros \:  =  \alpha  \beta  \:  \\ now \: let \: 3  + \sqrt{ \frac{5}{2} }  \: be \:  \alpha  \: and \: 3 -  \sqrt{ \frac{5}{2} } be \:  \beta  \\  \\ then \: sum \: of \: zeros \:  = 3 +  \sqrt{ \frac{5}{2} }  + 3 -  \sqrt{ \frac{5}{2} }  \\  \\ so sum \: of \: zeros = \: 3 + 3 \:  \:  \: (coz \:   - \sqrt { \frac{5}{2} }  +  \sqrt{ \frac{5}{2} } will \: cancel \: out \: ) \\  \\ sum \: of \: zero \: be \:  = 6 \\  \\ now \: product \: of \: zeros \:  = (3 +  \sqrt{ \frac{5}{2} })  ( 3 -  \sqrt{ \frac{5}{2} } ) \:  \:  \: {by \: using \: property \: of \:  {a}^{2} -  {b}^{2}  } \\  \\ product \: of \: zeros =  {3}^{2}  -  { \sqrt{ \frac{5}{2} } }^{2}  \\ product \:of \: zeros  =  9 -  \frac{5}{2}  \\ product \: of \: zero \:  =  \frac{18 - 5}{2}  \\ product \: of \: zeros =  \frac{13}{2}  \\  \\ by \: using \: formula \:  =  {x}^{2}  - ( \alpha  +  \beta )x  + \alpha  \beta  \\  \\ as \: we \: know \:  \alpha  +  \beta  = sum \: of \: zeros \:  = 6 \\ so \:  \alpha  +  \beta  = 6 \\ also \:  \alpha  \beta  = product \: of \: zeros \:  =  \frac{13}{2}  \\  so \  \alpha  \beta  =  \frac{13}{2}  \\  \\ by \: putting \: value \: in \:  \: formula \:   \\  \\  {x}^{2}  - 6x +  \frac{13}{2}   \\  \\ \\ hence \: required \: polynomial \: is \:  {x}^{2}  - 6x +  \frac{13}{2}

hope it helps

be brainly

Similar questions