Find a quadratic polynomial whose zeros are 3a+4band 4a+3b
Answers
Answered by
0
Answer:
3a+4b×4=12a+16b
4a+3b×3=12a+9b
Step-by-step explanation:
then -7b b= 1/7
a= 4/21
Answered by
3
Answer:
x^2 - 7( a + b )x + 12a^2 + 12b^2 + 25ab.
Or, x^2 - 7( a + b )x + ( 3a + 4b )( 4a + 3b )
Step-by-step explanation:
We know,
Polynomials can be written as x^2 - Sx + P, where S is the sum of roots and P is the product of roots.
So,
If 3a + 4b and 4a + 3b are the roots, that polynomial can be written as x^2 - { ( 3a + 4b ) + ( 4a + 3b ) }x + ( 3a + 4b )( 4a + 3b ).
⇒ x^2 - [ 3a + 4b + 4a + 3b ]x + [ 3a( 4a + 3b ) + 4b( 4a + 3b ) ]
⇒ x^2 - [ 7a + 7b ]x + [ 12a^2 + 9ab + 16ab + 12b^2 ]
⇒ x^2 - 7x( a + b ) + [ 12a^2 + 25ab + 12b^2 ]
⇒ x^2 - 7( a + b )x + 12a^2 + 12b^2 + 25ab.
Similar questions