Math, asked by avhaykumar135, 9 months ago

Find a quadratic polynomial whose zeros are 6 + root 3 upon 3 and 6 minus root 3 upon 3

Answers

Answered by tanwaraditya177
0

Answer:

-1/2 = -1/2

Step-by-step explanation:

To Find -

A quadratic polynomial

Now,

As we know that :-

α + β = -b/a

→ √3/4 + (-2/√3) = -b/a

→ √3/4 - 2/√3 = -b/a

→ 3 - 8/4√3 = -b/a

→ -5/4√3 = -b/a ....... (i)

And

αβ = c/a

→ √3/4 × -2/√3 = c/a

→ -2√3/4√3 = c/a ...... (ii)

Now, From (i) and (ii), we get :

a = 4√3

b = 5

c = -2√3

As we know that :-

For a quadratic polynomial :-

ax² + bx + c

→ (4√3)x² + (5)x + (-2√3)

→ 4√3x² + 5x - 2√3

Verification :-

→ 4√3x² + 5x - 2√3

here,

a = 4√3

b = 5

c = -2√3

Sum of zeroes :-

α + β = -b/a

→ -2/√3 + √3/4 = -(5)/4√3

→ -8 + 3/4√3 = -5/4√3

→ -5/4√3 = -5/4√3

LHS = RHS

And

αβ = c/a

→ -2/√3 × √3/4 = -2√3/4√3

→ -1/2 = -1/2

LHS = RHS

Hence,

Verified...

hope helpful mark as brainleist

Answered by Anonymous
5

\red{\tt{\underline{\underline{Answer:}}}}

\sf{The \ required \ polynomial \ is}

\sf{x^{2}-4x+\frac{11}{3}.}

\orange{\tt{\underline{\underline{Given:}}}}

\sf{\implies{Zeroes \ of \ the \ polynomial}}

\sf{are \ \frac{6+\sqrt3}{3} \ and \ \frac{6-\sqrt3}{3}}

\pink{\tt{\underline{\underline{To \ find:}}}}

\sf{Quadratic \ polynomial}

\green{\tt{\underline{\underline{Solution:}}}}

\sf{Let \ \alpha \ be \ \frac{6+\sqrt3}{3} \ and}

\sf{\beta \ be \ \frac{6-\sqrt3}{3}.}

\sf{Sum \ of \ zeroes=\frac{6+\sqrt3}{3}+\frac{6-\sqrt3}{3}}

\sf{\therefore{\alpha+\beta=\frac{12}{3}}}

\sf{\therefore{\alpha+\beta=4...(1)}}

\sf{Product \ of \ zeroes=\frac{6+\sqrt3}{3}\times\frac{6-\sqrt3}{3}}

\sf{\therefore{\alpha\beta=\frac{6^{2}-\sqrt3^{2}}{9}}}

\sf{\therefore{\alpha\beta=\frac{33}{9}}}

\sf{\therefore{\alpha\beta=\frac{11}{3}...(2)}}

\sf{Quadratic \ polynomial \ is}

\sf{x^{2}-(\alpha+\beta)x+(\alpha\beta)}

\sf{\implies{x^{2}-4x+\frac{11}{3}}}

\sf\purple{\tt{\therefore{The \ required \ polynomial \ is}}}

\sf\purple{\tt{x^{2}-4x+\frac{11}{3}.}}

Similar questions