find a quadratic polynomial whose zeros are Alpha and beta satisfy the relation alpha +beta=3 and alpha -beta=-1
Answers
Answer:
x^2 - 3x + 2.
Step-by-step explanation:
Given,
α and β are roots and follow these relations :
α + β = 3
α - β = - 1
Adding both:
α + β = 3
α - β = - 1
2α = 2
⇒ 2α = 2
⇒ α = 1
Therefore,
α + β = 3
1 + β = 3
β = 2
Now,
⇒ sum of roots = α + β = 3
⇒ Product of roots = αβ = 2( 1 ) = 2
Thus,
⇒ Required equation is
⇒ x^2 - Sx + P { where S and P are sum and product of roots respectively }
⇒ x^2 - 3x + 2
Answer:
X^2-3x+2
Step-by-step explanation:
Alfa+beta=3
Alfa-beta=-1
(--) (+) =(+)
------------------
2beta =4
Beta =4/2
Beta =2
From eq 1
Alfa+2=3
Alfa=3--2
Alfa=1
Alfa +beta =3
Alfa×beta =2
Then the equation is x^2-x(3)+2
X^2-3x+2