Math, asked by PuravShah, 8 months ago

Find a quadratic polynomial whose zeros are
3  + \sqrt{5 }  \div 5 \: and \: 3 -  \sqrt{5}  \div 5

Answers

Answered by mysticd
3

 Let \: \alpha = \frac{3+\sqrt{5}}{5} \: and

 \beta = \frac{3-\sqrt{5}}{5} \: are \: zeroes

 of \: Quadratic \: polynomial

 i) \alpha + \beta

 = \frac{3+\sqrt{5}}{5} + \frac{3-\sqrt{5}}{5}

 = \frac{3+\sqrt{5} + 3-\sqrt{5}}{5}

 = \frac{ 6}{5} \: --(1)

 ii) \alpha  \beta

 = \frac{3+\sqrt{5}}{5} \times \frac{3-\sqrt{5}}{5}

 = \frac{ 3^{2} - (\sqrt{5})^{2}}{25}

 = \frac{ 9 - 5}{25}

 = \frac{ 4}{25} \: --(2)

Therefore.,

 \blue { Form \: of \: a \: Quadratic \: equation }

 \blue { Whose \: zeroes \: are \: \alpha \: and \: \beta : }

 = k[ x^{2} - ( \alpha + \beta )x + \alpha \beta ]

 = k [ x^{2} - \Big( \frac{6}{5}\Big) x + \frac{4}{25} ]

 If \: k = 25 \: then \: 25x^{2} - 30x + 4

Therefore.,

 \red{ Required \: polynomial : }

 \green { = 25x^{2} - 30x + 4}

•••♪

Similar questions