Math, asked by subodhbhati18, 7 months ago

find a quadryic polynomial as the sum and product of its zeroes are -1/3 and 1/3respectivrly

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Find a quadratic polynomial as the sum and products of its zeros are -1/3 and 1/3 respectively :)

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \green{ \bold{ \underline{step \: by \: step \: explaination}}}

 \quad \bullet \underline{ \rm{by \: using \: formation \: of \: quadratic \: equation}}

 \:  \implies \displaystyle \sf{  \alpha  =  -  \frac{1}{3} }

 \:  \:  \implies \displaystyle \sf{ \alpha    =  \frac{1}{3} }

 \:  \:  \implies \displaystyle \bf{ {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0}

 \:  \: \\   \implies \displaystyle \sf{ {x}^{2}  -  \bigg( \frac{ - 1}{3}   +  \frac{1}{3} \bigg)x +  \bigg( \frac{ - 1}{3} \times  \frac{1}{3}   \bigg) = 0}

 \:  \:  \implies\displaystyle \sf{ {x}^{2}  - (0)x +  \frac{ - 1}{9}  = 0}

 \:  \:  \implies \displaystyle \sf{9 {x}^{2}  - 1 = 0}

 \:  \:  { \boxed{ \underline{ \bf \therefore \: the \: quadratic \: equation \: is \: 9 {x}^{2}  - 1 = 0}}}

Similar questions