Math, asked by aaditya5952, 7 months ago

Find a relation between x and y such that the point (x, y) is equidistant from
the points (6, 1) and (3,5).​

Answers

Answered by Skanda09
1

Answer:

Step-by-step explanation:

Let the point P(x,y) is equidistant from the points A(3,6)and B(−3,4)

∴PA=PB

By using the distance formula

=  

(x  

2

​  

−x  

1

​  

)  

2

+(y  

2

​  

−y  

1

​  

)  

2

 

​  

    we have

⇒  

(x−3)  

2

+(y−6)  

2

 

​  

=  

(x+3)  

2

+(y−4)  

2

 

​  

 

⇒(x−3)  

2

+(y−6)  

2

=(x+3)  

2

+(y−4)  

2

 

⇒x  

2

−6x+9+y  

2

−12y+36=x  

2

+6x+9+y  

2

−8y+16

⇒−6x−6x−12y+8y+36−16=0

⇒−12x−4y+20=0

⇒3x+y−5=0

Hence this is a relation between x and y.

Answered By

Answered by Anonymous
4

Solution:-

Given points :-

 \rm \to  A = (6,1) \: and \: B = (3,5) \:  \: are \: equidistant \:

 \rm \:  \to \: p \:  = (x,y)

To find :-  

 \to \rm \: relation \: between \: x \: and \: y

Formula

\boxed{\rm{d=\sqrt{{(x_2-x_1)}^{2}+{( y_2 - y_1)}^{2}}}}

Now we can write as

 \to \rm \: AP = BP

 \rm \to {AP}^{2}  = {BP}^{2}

For equidistant

\rm\to{(x_2-x_1)}^{2}+{( y_2-y_1)}^{2} ={(x_2 - x_1)}^{2}+{( y_2 - y_1)}^{2}

 \rm \to \: (x - 6) {}^{2}  + (y - 1) {}^{2}  = (x - 3) {}^{2}  + (y - 5) {}^{2}

Using this identity

 \rm \:  {a}^{2}  +  {b}^{2}   -  2ab =(  {a}  -  b)^{2}

Now we can write

 \rm \to \:  {x}^{2}  + 36 - 12x +  {y}^{2}  + 1 - 2y =  {x}^{2}  + 9 - 6y +  {y}^{2}  + 25 - 10y

 \rm \to \:   \cancel{x}^{2}  + 36 - 12x +   \cancel{y}^{2}  + 1 - 2y =   \cancel{x}^{2}  + 9 - 6y +   \cancel{y}^{2}  + 25 - 10y

 \rm \:     \to 36 - 12x  + 1 - 2y =    9 - 6x + 25 - 10y

 \rm \:  \to \: 37 - 12x - 2y = 34 - 6x - 10y

 \rm \to \: 37 - 34 - 2y + 10y =  - 6x + 12x

 \rm \to \: 3 + 8y  = 6x

 \rm \to \: 6x - 8y = 3

So relation between x and y is

\rm \to \: 6x - 8y = 3

Similar questions