Math, asked by vachanasomshekar, 5 months ago

Find a relation between x and y such that the point (x,y) is equidistant from the points (-4,-1) and (5,-2).

Please do answer with an explanation.​

Answers

Answered by dhakarerishav
3

Step-by-step explanation:

(X+4)^2 - (y+1)^2 = (X-5)^2 - (y+2)^2

X2+16+8x-y2-1-2y=X2+25-10x-y2-4-4y

16-1-25+4+8x+10x-2y+4y=0

-6+18x+2y=0

18x+2y=6

6x+y=3

Answered by REDPLANET
4

\underline{\boxed{\bold{ \bigstar \; Question \; \bigstar }}}  

 \; \; \; \; \;

➠ Find a relation between x and y such that the point (x,y) is equidistant from the points (-4,-1) and (5,-2)

  \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{ \bigstar \; Important \; Information \; \bigstar }}}  

 \; \; \; \; \;

❏ Midpoint of a line segment is such a point that divides line segment in 2 parts of equal measure.

❏ Here is a formula that is unique relation between co-ordinates of midpoints and endpoints of line segment.

  • Mid - Point : (x , y)

Let the given co-ordinates of endpoints be :

 \; \; \; \; \;

  • End Point 1 : (x₁ , y₁)
  • End Point 2 : (x₂ , y₂)

 \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { :\longmapsto \; x = \dfrac{x_1 + x_2}{2} }

\star \; \; \; \; \; \; \;  \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { :\longmapsto \; y = \dfrac{y_1 + y_2}{2} }

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━  

  \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Given \; \bigstar }}}  

 \; \; \; \; \;

➠ End Point 1 : (x₁,y₁) = (-4,-1)

➠ End Point 2 : (x₂,y₂) = (5,-2)

  \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Answer \; \bigstar }}}  

Let's Start !

  \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \; \; \;

❖ Here we go with relation of x-coordinates.

  \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { :\longmapsto \; x = \dfrac{x_1 + x_2}{2} }

 \; \; \; \; \;

:\implies \; x = \dfrac{(-4)+ 5}{2}

:\implies \; x = \dfrac{1}{2}

\boxed {\red{:\implies \; 2x = 1 } }  \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mathtt { \{ Equation \;: 1 \} }

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

❖ Here we go with relation of y-coordinates.

  \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed { :\longmapsto \; y = \dfrac{y_1 + y_2}{2} }

 \; \; \; \; \;

:\implies \; y = \dfrac{(-1)+ (-2)}{2}

:\implies \; y = \dfrac{-3}{2}

\boxed {\red{:\implies \; 2y = -3 } }  \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mathtt { \{ Equation \;: 2 \} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now by adding Equation : 1 and Equation : 2 ,

 \; \; \; \; \;

\boxed {\red{:\leadsto \; 2x = 1 } }  \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mathtt { \{ Equation \;: 1 \} }

\boxed {\red{:\leadsto \; 2y = -3 } }  \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mathtt { \{ Equation \;: 2 \} }

 \; \; \; \; \;

:\implies 2x + 2y = 1 + (-3)

:\implies 2x + 2y = 1 -3

:\implies 2x + 2y = -2

:\implies 2( x + y)= -2

\boxed {\orange{:\leadsto x + y= \dfrac{-2}{2}  = -1 } }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \; \; \;

\boxed{\boxed{\bold{\therefore Unique \; Relation : x + y = -1}}}

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u.../

【Brainly Advisor】

Similar questions