find a square + b square
Answers
Question:
Find the value of a^2 + b^2 if ;
a•sin@ - b•cos@ = 3 and
a•cos@ + b•sin@ = 4 .
Answer:
a^2 + b^2 = 25
Note:
• (sin@)^2 + (cos@)^2 = 1
• (tan@)^2 + 1 = (sec@)^2
• (cot@)^2 + 1 = (cosec@)^2
Solution:
We have,
a•sin@ - b•cos@ = 3 ---------(1)
a•cos@ + b•sin@ = 4 -----------(2)
Now,
Squaring both sides of eq-(1) , we get;
=> (a•sin@ - b•cos@)^2 = (3)^2
=> (a^2)•(sin@)^2 + (b^2)•(cos@)^2
– 2ab•sin@•cos@ = 9 --------(3)
Also,
Squaring both sides of eq-(2) , we get;
=> (a•cos@ + b•sin@)^2 = (4)^2
=> (a^2)•(cos@)^2 + (b^2)•(sin@)^2
+ 2ab•sin@•cos@ = 16 --------(4)
Now,
Adding eq-(3) and eq-(4), we get;
=> (a^2)•(sin@)^2 + (b^2)•(cos@)^2
– 2ab•sin@•cos@ + (a^2)•(cos@)^2
+ (b^2)•(sin@)^2 + 2ab•sin@•cos@
= 9 + 16
=> (a^2)•{(sin@)^2 + (cos@)^2}
+ (b^2)•{(sin@)^2 + (cos@)^2} = 25
=> a^2 + b^2 = 25.
{(sin@)^2 + (cos@)^2 = 1}
Hence,
The required value of a^2 + b^2 = 25 .