find ( a square + b square + c square ) if a + b + c = 17 and(ab + bc + ca)=< 30
Answers
GIVEN :-
- a + b + c = 17
- ab + bc + ca = 30
TO FIND :-
- a² + b² + c²
SOLUTION :-
Let ,
We have ,
★ Squaring on both sides on eq(1) ,
★ Substituting the values of ab + bc + ca ,
∴ The value of a² + b² + c² = 229
ADDITIONAL INFO :-
Explanation:
GIVEN :-
a + b + c = 17
ab + bc + ca = 30
TO FIND :-
a² + b² + c²
SOLUTION :-
Let ,
\large \sf \: {a} + b + c = 17 \longrightarrow \: eq(1)a+b+c=17⟶eq(1)
We have ,
\large \sf \: a + b + c = 17a+b+c=17
\large \sf \: ab + bc + ca = 30ab+bc+ca=30
★ Squaring on both sides on eq(1) ,
\implies \sf \: (a + b + c) {}^{2} = (17) {}^{2}⟹(a+b+c)
2
=(17)
2
\large {\underline {\boxed {\bigstar {\red {\sf{ \: (a + b + c ){}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca}}}}}}
★(a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca
\begin{gathered} \implies \sf \: {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca = 289 \\ \\ \implies \sf \: {a}^{2} + b {}^{2} + {c}^{2} + 2(ab + bc + ca) = 289 \end{gathered}
⟹a
2
+b
2
+c
2
+2ab+2bc+2ca=289
⟹a
2
+b
2
+c
2
+2(ab+bc+ca)=289
★ Substituting the values of ab + bc + ca ,
\begin{gathered} \implies \sf \: {a}^{2} + {b}^{2} + {c}^{2} + 2(30) = 289 \\ \\ \implies \sf \: {a}^{2} + {b}^{2} + {c}^{2} + 60 = 289 \\ \\ \implies \sf \: {a}^{2} + {b}^{2} + {c}^{2} = 289 - 60 \\ \\ \implies {\underline {\boxed {\blue {\sf{ {a}^{2} + {b}^{2} + {c}^{2} = 229}}}}}\end{gathered}
⟹a
2
+b
2
+c
2
+2(30)=289
⟹a
2
+b
2
+c
2
+60=289
⟹a
2
+b
2
+c
2
=289−60
⟹
a
2
+b
2
+c
2
=229
∴ The value of a² + b² + c² = 229
ADDITIONAL INFO :-
\begin{gathered} \sf \:(1) \: (a + b + c) {}^{3} = a {}^{3} + {b}^{3} + c {}^{3} + 3(a + b)(b + c)(c + a) \\ \\ \sf (2) \: (a + b)(a - b) = {a}^{2} - {b}^{2} \\ \\ \sf (3) \: {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2} ) \\ \\ \sf (4) {a}^{3} + {b}^{3 } = (a + b)( {a}^{2} - ab + {b}^{2} )\end{gathered}
(1)(a+b+c)
3
=a
3
+b
3
+c
3
+3(a+b)(b+c)(c+a)
(2)(a+b)(a−b)=a
2
−b
2
(3)a
3
−b
3
=(a−b)(a
2
+ab+b
2
)
(4)a
3
+b
3
=(a+b)(a
2
−ab+b
2
)