Math, asked by richa17mishra, 9 months ago

Find a three digit number which, when reversed, becomes equal to 17 times the square
of its cube root.​

Answers

Answered by harshpandey0301
3

Answer:

Step-by-step explanation:

Let us consider the first, second & third digits of the three digit number be “x”, “y” & “z” respectively.  

Then the 3-digit number will be 100x + 10y +z.

When reversed, the 3-digit number will become 100z + 10y + x.

According to the question, we have the equation as  

100z + 10y + x = 17 * [100x + 10y +z]^(2/3)  .... (i)

Now, in order to solve for the above equation,  

1. Firstly, we will consider that the right side of the equation contains a cube root. So, we have to write down all 3-digit numbers having perfect cubes which are as follows:

                                   5^3 = 125

                                    6^3 = 216

                                    7^3 = 343

                                     8^3 = 512

                                     9^3 = 729

                                    10^3 = 1000 …… which is not a 3-digit number

3. Secondly, we will look if 17 times the square of the 3-digit number’s cube root gives the reversed order of the number.

                                                      17 * [(5^3)^2/3] = 425

                                                        17 * [(6^3)^2/3] = 612

                                                     17 * [(7^3)^2/3] = 833

                                                    17* [(8^3)^2/3] = 1088 …. Not a 3-digit number

3. Lets consider 216 as the 3 digit number and solve for the right side of the equation (i)

                   17 * [100x + 10y +z]^(2/3)

                 = 17 *  [216]^(2/3)  

                = 17 *  ∛(216^2)

                 = 17 * ∛46656

                 = 17 * 36

                 = 612

I HOPE THIS ANSWER WAS HELPFUL , IF YES THEN PLS MARK IT IN BRAINLEIST

Similar questions