Physics, asked by pranavaiyyer2311, 9 months ago

Find a unit vector parallel to the resultant of the vectors ⃗ = 2cap − cap − 3cap and ⃗⃗ = 3icap + 4jcap − 2

Answers

Answered by pulakmath007
50

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

\vec{a} = 2 \hat{\imath}  - 7 \hat{\jmath}  - 3 \hat{k}

\vec{b} = 3 \hat{\imath} + 4 \hat{\jmath}  - 2 \hat{k}

So

\vec{a}  +  \vec{b} \:  = 5 \hat{\imath}  - 3\hat{\jmath}  - 5 \hat{k}

Now

 |\vec{a}  +  \vec{b} \:|  \:  =  \sqrt{25 + 9 + 25}  =  \sqrt[]{59}

So the required unit vector parallel to the resultant of the vectors

  = \frac{(\vec{a}  +  \vec{b} \:)}{|\vec{a}  +  \vec{b} \:|}  =  \frac{1}{ \sqrt{59} } (5 \hat{\imath}  - 3\hat{\jmath}  - 5 \hat{k} )

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by ꜱɴᴏᴡyǫᴜᴇᴇɴ
16

Explanation:

\vec{a} = 2 \hat{\imath} - 7 \hat{\jmath} - 3 \hat{k}

a

=2

ı

^

−7

ȷ

^

−3

k

^

\vec{b} = 3 \hat{\imath} + 4 \hat{\jmath} - 2 \hat{k}

b

=3

ı

^

+4

ȷ

^

−2

k

^

So

\vec{a} + \vec{b} \: = 5 \hat{\imath} - 3\hat{\jmath} - 5 \hat{k}

a

+

b

=5

ı

^

−3

ȷ

^

−5

k

^

Now

|\vec{a} + \vec{b} \:| \: = \sqrt{25 + 9 + 25} = \sqrt[]{59}∣

a

+

b

∣=

25+9+25

=

59

So the required unit vector parallel to the resultant of the vectors

= \frac{(\vec{a} + \vec{b} \:)}{|\vec{a} + \vec{b} \:|} = \frac{1}{ \sqrt{59} } (5 \hat{\imath} - 3\hat{\jmath} - 5 \hat{k} )=

a

+

b

(

a

+

b

)

=

59

1

(5

ı

^

−3

ȷ

^

−5

k

^

)

Similar questions