Find a unit vector parallel to the resultant of the vectors ⃗ = 2cap − cap − 3cap and ⃗⃗ = 3icap + 4jcap − 2
Answers
Answered by
50
So
Now
So the required unit vector parallel to the resultant of the vectors
Answered by
16
Explanation:
\vec{a} = 2 \hat{\imath} - 7 \hat{\jmath} - 3 \hat{k}
a
=2
ı
^
−7
ȷ
^
−3
k
^
\vec{b} = 3 \hat{\imath} + 4 \hat{\jmath} - 2 \hat{k}
b
=3
ı
^
+4
ȷ
^
−2
k
^
So
\vec{a} + \vec{b} \: = 5 \hat{\imath} - 3\hat{\jmath} - 5 \hat{k}
a
+
b
=5
ı
^
−3
ȷ
^
−5
k
^
Now
|\vec{a} + \vec{b} \:| \: = \sqrt{25 + 9 + 25} = \sqrt[]{59}∣
a
+
b
∣=
25+9+25
=
59
So the required unit vector parallel to the resultant of the vectors
= \frac{(\vec{a} + \vec{b} \:)}{|\vec{a} + \vec{b} \:|} = \frac{1}{ \sqrt{59} } (5 \hat{\imath} - 3\hat{\jmath} - 5 \hat{k} )=
∣
a
+
b
∣
(
a
+
b
)
=
59
1
(5
ı
^
−3
ȷ
^
−5
k
^
)
Similar questions