Math, asked by faizaakhan, 2 months ago



Find a unit vector perpendicular to each of the vector a +b and a - b , where
ā= 3î + 29 +2k and =î +2j-2k .​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}

and

\rm :\longmapsto\:\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}

Now,

Let assume that,

\rm :\longmapsto\:\vec{c} = \vec{a} + \vec{b}

\rm \:  =  \:  \: 3\hat{i} + 2\hat{j} + 2\hat{k} + \hat{i} + 2\hat{j} - 2\hat{k}

\rm \:  =  \:  \: 4\hat{i} + 4\hat{j}

Let assume that,

\rm :\longmapsto\:\vec{d} = \vec{a}  -  \vec{b}

\rm \:  =  \:  \: 3\hat{i} + 2\hat{j} + 2\hat{k}  -  \hat{i}  - 2\hat{j}  +  2\hat{k}

\rm \:  =  \:  \: 2\hat{i} + 4\hat{k}

Consider,

\rm :\longmapsto\:\vec{c} \times \vec{d}

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\4&4&0\\2&0& 4\end{array}\right | \end{gathered}

\rm \:  =  \:  \: \hat{i}(16 - 0) - \hat{j}(16 - 0) + \hat{k}(0 - 8)

\rm \:  =  \:  \: 16\hat{i} -16 \hat{j}  - 8 \hat{k}

Consider,

\rm :\longmapsto\: |\vec{c} \times \vec{d}|

\rm \:  =  \:  \:  |16\hat{i} - 16\hat{j} - 8\hat{k}|

\rm \:  =  \:  \:  \sqrt{ {(16)}^{2} +  {( - 16)}^{2}  +  {( - 8)}^{2}  }

\rm \:  =  \:  \:  \sqrt{256 + 256 + 64}

\rm \:  =  \:  \:  \sqrt{576}

\rm \:  =  \:  \: 24

Now,

\rm :\longmapsto\:Unit \: vector \:  \perp \: to \: both \: \vec{c} \: and \: \vec{d} \: is \:

\rm \:  =  \:  \: \dfrac{\vec{c} \times \vec{d}}{ |\vec{c} \times \vec{d}| }

\rm \:  =  \:  \: \dfrac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24}

\rm \:  =  \:  \: \dfrac{2}{3}\hat{i}- \dfrac{2}{3}\hat{j}  - \dfrac{1}{3}\hat{k}

Additional Information :-

\boxed{ \sf{ \:\vec{a} \times \vec{b} =  - \vec{b} \times \vec{a}}}

\boxed{ \sf{ \:\vec{a}.\vec{b} = \vec{b}.\vec{a}}}

\boxed{ \sf{ \:\vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos \theta}}

\boxed{ \sf{ \:\vec{a} \times \vec{a} = 0}}

\boxed{ \sf{ \: { |\vec{a} \times \vec{b}| }^{2}  +  {(\vec{a}.\vec{b})}^{2}  =  { |\vec{a}| }^{2}  { |\vec{b}| }^{2} }}

\boxed{ \sf{ \:\vec{a} \times \vec{b} = 0 \:  \implies \: a \:  \parallel \: \vec{b}}}

\boxed{ \sf{ \:\vec{a}. \vec{b} = 0 \:  \implies \: a \:  \perp\: \vec{b}}}

Similar questions