Math, asked by khushipandey1603, 3 months ago

Find a unit vector perpendicular to the plane containing the vectors
a=2i+j+k and b=i+2j+k​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\vec{a} = 2\hat{i} + \hat{j} + \hat{k}

And

\rm :\longmapsto\:\vec{b} = \hat{i} + 2\hat{j} + \hat{k}

We have to find

\rm :\longmapsto\:A \: unit \: vector \:  \perp \: to \: both \: \vec{a} \: and \: \vec{b}

\rm :\longmapsto\:Let \: \vec{c}  \: \:  is \:  \perp \: to \: both \: \vec{a} \: and \: \vec{b}

Then,

\rm :\longmapsto\:\hat{c} = \dfrac{\vec{a} \times \vec{b}}{ |\vec{a} \times \vec{b}| }  -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:\vec{a} \times \vec{b}

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\2&1& 1\\1&2& 1\end{array}\right | \end{gathered}

\rm \:  =  \:  \: \:\hat{i}(1 - 2) - \hat{j}(2 - 1) + \hat{k}(4 - 1)

\rm \:  =  \:  \: \: - \hat{i} - \hat{j} + 3\hat{k}

\bf\implies \: \: \vec{a} \times \vec{b} \: =  \:  - \hat{i} - \hat{j} + 3\hat{k}

Now,

Consider,

\rm :\longmapsto\: |\vec{a} \times \vec{b}|

\rm \:  =  \:  \: \: | - \hat{i} - \hat{j} + 3\hat{k}|

\rm \:  =  \:  \: \: \sqrt{ {( - 1)}^{2}  +  {( - 1)}^{2}  +  {(3)}^{2} }

\rm \:  =  \:  \: \: \sqrt{1 + 1 + 9}

\rm \:  =  \:  \: \: \sqrt{11}

Hence,

On substituting the above values in equation (1), we get

\rm :\longmapsto\:\hat{c} = \dfrac{ - \hat{i} - \hat{j} + 3\hat{k}}{ \sqrt{11} }

\bf\implies \:\hat{c}  =  \: - \dfrac{1}{ \sqrt{11} }\hat{i}  - \dfrac{1}{ \sqrt{11} }\hat{j}  + \dfrac{3}{ \sqrt{11} }\hat{k}

Additional information :-

\rm :\longmapsto\:\vec{a} \times \vec{a} = 0

\rm :\longmapsto\:\vec{a} \times \vec{b} =  -  \: \vec{b} \times \vec{a}

\rm :\longmapsto\:\vec{a} \times \vec{b} = 0 \:  \implies \: \vec{a} \:  \parallel \: \vec{b}

\rm :\longmapsto\:\vec{c} = \vec{a} \times \vec{b} \implies \: \vec{c} \:  \perp \: \vec{a} \: and \: \vec{c} \:  \perp \: \vec{b}

Similar questions