Find a unit vector perpendicular to the plane determined by the points P(1, -1, 2), Q(2, 0, -1) and Q(0, 2, 1).
Answers
Answer:
n =
Step-by-step explanation:
The given points are
P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1)
Vector PQ = ( 2 -1 , 0 + 1 , -1 -2 ) = ( 1 , 1 , - 3 )
Vector PR = ( 0 - 2 , 2 - 0 , 1 + 1 ) = ( - 2 , 2 , 2)
Now
PQ × QR =
PQ × QR = i (2 + 6 ) - j ( 2 - 6) + k ( 2 + 2 )
PQ × QR = 8 i + 4 j + 4 k
|PQ × QR| =
Now
Let n be the required unit vector Perpendicular to this Plane, then
n = [PQ × QR] / |PQ × QR|
n =
The given points are
P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1)
Vector PQ = ( 2 -1 , 0 + 1 , -1 -2 ) = ( 1 , 1 , - 3 )
Vector PR = ( 0 - 2 , 2 - 0 , 1 + 1 ) = ( - 2 , 2 , 2)
Now
PQ × QR = \begin{gathered}\left[\begin{array}{ccc}i&j&k\\1&1&-3\\-2&2&2\end{array}\right]\end{gathered}⎣⎢⎡i1−2j12k−32⎦⎥⎤
PQ × QR = i (2 + 6 ) - j ( 2 - 6) + k ( 2 + 2 )
PQ × QR = 8 i + 4 j + 4 k
|PQ × QR| = \sqrt{8^{2} +4^{2}+4^{2}}=\sqrt{96}82+42+42=96
Now
Let n be the required unit vector Perpendicular to this Plane, then
n = [PQ × QR] / |PQ × QR|
n = \frac{1}{\sqrt{96} } [8 i + 4 j + 4 k]961[8i+4j+4k]