Math, asked by kumarmass050, 2 months ago

Find a unit vectot normal to the surface x^3-xyz-z^3 at the point ( 1,1,1)

Answers

Answered by shadowsabers03
13

Given surface is,

\small\text{$\displaystyle\longrightarrow x^3-xyz-z^3+1=0$}

We need to find a unit vector normal to this surface at the point (1, 1, 1).

Let us define the function,

\small\text{$\displaystyle\longrightarrow f(x,\ y,\ z)=x^3-xyz-z^3+1$}

The partial derivative of f wrt x is,

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial x}(x,\ y,\ z)=3x^2-yz$}

At \small\text{$(x,\ y,\ z)=(1,\ 1,\ 1),$}

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial x}(1,\ 1,\ 1)=2$}

The partial derivative of f wrt y is,

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial y}(x,\ y,\ z)=-xz$}

At \small\text{$(x,\ y,\ z)=(1,\ 1,\ 1),$}

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial y}(1,\ 1,\ 1)=-1$}

The partial derivative of f wrt z is,

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial z}(x,\ y,\ z)=-xy-3z^2$}

At \small\text{$(x,\ y,\ z)=(1,\ 1,\ 1),$}

\small\text{$\displaystyle\longrightarrow \dfrac{\partial f}{\partial z}(1,\ 1,\ 1)=-4$}

Then a normal vector to the surface is given by,

\small\text{$\displaystyle\longrightarrow\vec{n}=\left<\dfrac{\partial f}{\partial x},\ \dfrac{\partial f}{\partial y},\ \dfrac{\partial f}{\partial z}\right>$}

\small\text{$\displaystyle\longrightarrow\vec{n}=\left<2,\ -1,\ -4\right>$}

Then a unit vector normal to the surface is,

\small\text{$\displaystyle\longrightarrow\underline{\underline{\hat n=\dfrac{1}{\sqrt{21}}\left<2,\ -1,\ -4\right>}} $}

Similar questions