Physics, asked by tanyashankar25814, 1 year ago

FIND A VECTOR WHOSE LENGTH IS 7 AND WHICH IS PERPENDICULAR TO EACH OF THE VECTORS A=2I-3J+6K AND B=I CAP+J CAP-K CAP

Answers

Answered by lidaralbany
130

Answer: The vector is \vec{C} = \dfrac{-21\hat i+56\hat j+35\hat k}{\sqrt{98}}

Explanation:

Given that,

Length = 7

\vec{A} = 2\hat i-3\hat j + 6\hat k

\vec{B} = \hat i+ \hat j - \hat k

We know that,

Let us consider required vector is \vec{C}.

Now, the vectors A and B are perpendicular to each

\vec{A}\times\vec{B}=\begin{vmatrix}i &j &k \\2&-3 &6 \\ 1&1 &-1 \end{vmatrix}

\vec{A}\times\vec{B} = \hat i(3-6)-\hat j(-2-6)+\hat k(2+3)

\vec{A}\times\vec{B} = -3\hat i+8\hat j+5\hat k

|\vec{A}\times\vec{B}| = \sqrt{(-3)^{2}+  (8)^{2}+(5)^{2}}

|\vec{A}\times\vec{B}| = \sqrt{98}

Now, the vector is

\vec{C} = \dfrac{7(\vec{A}\times\vec{B})}{|\vec{A}\times\vec{B}|}

\vec{C} = \dfrac{-21\hat i+56\hat j+35\hat k}{\sqrt{98}}

Hence, the required vector is \vec{C} = \dfrac{-21\hat i+56\hat j+35\hat k}{\sqrt{98}}.

Answered by mindfulmaisel
32

"The magnitude of the vector is given as 7, and the vector perpendicular to the given three vector as A = 2 i + 3 j + 6 k and B = i + j – k. therefore the perpendicular vector will be C = A \times B.  

\Rightarrow C = (2 i + 3 j + 6 k ) \times (i + j -k )

\Rightarrow C = - 3 i + 8 j + 5 k.  

The magnitude of C will then be C\quad =\quad \sqrt { 98 }therefore the unit vector of 7 be considered along the vector C as U = vector C / magnitude of C  

\Rightarrow U = - 3 i + 8 j + 5 k / \sqrt 98

And also C = 7 U thereby,  

7U\quad =\quad 7(\frac { 3i+8j+5k }{ \sqrt { 98 } } )\Rightarrow 7 U\quad

=\quad -21i+56j+\frac { 35k }{ \sqrt { 98 } }

\Rightarrow 7 7U\quad =\quad (\frac { -3 }{ \sqrt { 2 } } )i+(\frac { 8 }{ \sqrt { 2 } } )j+(\frac { 5 }{ \sqrt { 2 } } )k

\RightarrowTherefore the required vector = -3i+8j+\frac { 5k }{ \sqrt { 2 } }"

Similar questions